CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice
نویسندگان
چکیده
Toll-like receptor 4 (TLR4) is considered to have a critical role in the occurrence and development of atherosclerosis in atherosclerosis-prone mice; however, it remains uncertain whether treatment with a TLR4 inhibitor may attenuate atherosclerosis. The present study aimed to determine the vascular protective effects of the TLR4 inhibitor CLI-095 on apolipoprotein E‑deficient (ApoE‑/‑) mice. ApoE‑/‑ mice were fed either chow or a high‑fat diet, and were treated with or without CLI‑095 for 10 weeks. The mean atherosclerotic plaque area in the aortic sections of CLI‑095‑treated mice was 54.3% smaller than in the vehicle‑treated mice (P=0.0051). In vitro, murine peritoneal macrophages were treated with or without CLI‑095, and were subsequently stimulated with oxidized low‑density lipoprotein. Treatment with CLI‑095 markedly reduced the expression levels of lectin‑like oxidized low‑density lipoprotein receptor‑1 and acyl-coenzyme A:cholesterol acyltransferase‑1, and significantly upregulated the expression levels of ATP‑binding cassette transporter A1, predominantly via suppressing activation of the TLR4/nuclear factor‑κB signaling pathway. The results of the present study indicated that the TLR4 inhibitor CLI‑095 has the ability to suppress the progression of atherosclerosis in an in vivo model by reducing macrophage foam cell formation.
منابع مشابه
Resveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملDeficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis.
Foam cells are a hallmark of atherosclerosis. However, it is unclear whether foam cell formation per se protects against atherosclerosis or fuels it. In this study, we investigated the role of adipose differentiation-related protein (ADFP), a major lipid droplet protein (LDP), in the regulation of foam cell formation and atherosclerosis. We show that ADFP expression facilitates foam cell format...
متن کاملNitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice.
OBJECTIVE Inflammatory processes and foam cell formation are key determinants in the initiation and progression of atherosclerosis. Electrophilic nitro-fatty acids, byproducts of nitric oxide- and nitrite-dependent redox reactions of unsaturated fatty acids, exhibit antiinflammatory signaling actions in inflammatory and vascular cell model systems. The in vivo action of nitro-fatty acids in chr...
متن کاملInactivation of the adenosine A2A receptor protects apolipoprotein E-deficient mice from atherosclerosis.
BACKGROUND Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall. The A(2A) receptor (A(2A)R) plays a central role in many antiinflammatory effects of adenosine. However, the role of A(2A)R in atherosclerosis is not clear. METHODS AND RESULTS The knockout of A(2A)R in apolipoprotein E-deficient (Apoe(-/-)/A(2A)R(-/-)) mice led to an increase in body weight and levels o...
متن کاملAdenosine monophosphate-activated protein kinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice.
Increasing evidence suggests that adenosine monophosphate-activated protein kinase (AMPK) exerts protective effects for cardiovascular diseases apart from the regulation of energy homeostasis. However, the role of AMPK and its underlying mechanism on macrophage foam cell formation are poorly understood. In this study, we sought to investigate the potential effects of AMPK in modulating choleste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2016